Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(4): 2221-2233, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38318756

RESUMO

Motilin is an important hormonal regulator in the migrating motor complex (MMC). Free fatty acid receptor-1 (FFAR1, also known as GPR40) has been reported to stimulate motilin release in human duodenal organoids. However, how FFAR1 regulates gastric motility in vivo is unclear. This study investigated the role of FFAR1 in the regulation of gastric contractions and its possible mechanism of action using Suncus murinus. Firstly, intragastric administration of oleic acid (C18:1, OA), a natural ligand for FFAR1, stimulated phase II-like contractions, followed by phase III-like contractions in the fasted state, and the gastric emptying rate was accelerated. The administration of GW1100, an FFAR1 antagonist, inhibited the effects of OA-induced gastric contractions. Intravenous infusion of a ghrelin receptor antagonist (DLS) or serotonin 4 (5-HT4) receptor antagonist (GR125487) inhibited phase II-like contractions and prolonged the onset of phase III-like contractions induced by OA. MA-2029, a motilin receptor antagonist, delayed the occurrence of phase III-like contractions. In vagotomized suncus, OA did not induce phase II-like contractions. In addition, OA promoted gastric emptying through a vagal pathway during the postprandial period. However, OA did not directly act on the gastric body to induce contractions in vitro. In summary, this study indicates that ghrelin, motilin, 5-HT, and the vagus nerve are involved in the role of FFAR1 regulating MMC. Our findings provide novel evidence for the involvement of nutritional factors in the regulation of gastric motility.


Assuntos
Ácidos Graxos não Esterificados , Motilidade Gastrointestinal , Humanos , Animais , Ácidos Graxos não Esterificados/farmacologia , Motilina/metabolismo , Motilina/farmacologia , Complexo Mioelétrico Migratório/fisiologia , Estômago/fisiologia , Musaranhos/metabolismo
2.
Drug Metab Dispos ; 52(4): 305-311, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38262704

RESUMO

Tree shrews are a nonprimate species used in a range of biomedical studies. Recent genome analysis of tree shrews found that the sequence identities and the numbers of genes of cytochrome P450 (CYP or P450), an important family of drug-metabolizing enzymes, are similar to those of humans. However, tree shrew P450s have not yet been sufficiently identified and analyzed. In this study, novel CYP2D8a and CYP2D8b cDNAs were isolated from tree shrew liver and were characterized, along with human CYP2D6, dog CYP2D15, and pig CYP2D25. The amino acid sequences of these tree shrew CYP2Ds were 75%-78% identical to human CYP2D6, and phylogenetic analysis showed that they were more closely related to human CYP2D6 than rat CYP2Ds, similar to dog and pig CYP2Ds. For tree shrew CYP2D8b, two additional transcripts were isolated that contained different patterns of deletion. The gene and genome structures of CYP2Ds are generally similar in dogs, humans, pigs, and tree shrews. Tree shrew CYP2D8a mRNA was most abundantly expressed in liver, among the tissue types analyzed, similar to dog CYP2D15 and pig CYP2D25 mRNAs. Tree shrew CYP2D8b mRNA was also expressed in liver, but at a level 7.3-fold lower than CYP2D8a mRNA. Liver microsomes and recombinant protein of both tree shrew CYP2Ds metabolized bufuralol and dextromethorphan, selective substrates of human CYP2D6, but the activity level of CYP2D8a greatly exceeded that of CYP2D8b. These results suggest that tree shrew CYP2D8a and CYP2D8b are functional drug-metabolizing enzymes, of which CYP2D8a is the major CYP2D in liver. SIGNIFICANCE STATEMENT: Novel tree shrew CYP2D8a and CYP2D8b cDNAs were isolated from liver. Their amino acid sequences were 75%-78% identical to human CYP2D6. For CYP2D8b, two additional transcripts contained different patterns of deletion. Tree shrew CYP2D8a mRNA was abundantly expressed in liver, similar to dog CYP2D15 and pig CYP2D25 mRNAs. Recombinant tree shrew CYP2Ds catalyzed the oxidation of bufuralol and dextromethorphan. Tree shrew CYP2D8a and CYP2D8b are functional drug-metabolizing enzymes, of which CYP2D8a is the major CYP2D in liver.


Assuntos
Citocromo P-450 CYP2D6 , Dextrometorfano , Etanolaminas , Humanos , Ratos , Suínos , Animais , Cães , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Dextrometorfano/metabolismo , Tupaia/genética , Tupaia/metabolismo , Tupaiidae/genética , Tupaiidae/metabolismo , Filogenia , Musaranhos/genética , Musaranhos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Xenobiotica ; 53(10-11): 573-580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37934191

RESUMO

Cytochromes P450 (CYPs or P450s) are important enzymes for drug metabolism. Tree shrews are non-primate animal species used in various fields of biomedical research, including infection (especially hepatitis viruses), depression, and myopia. A recent tree shrew genome analysis indicated that the sequences and the numbers of P450 genes are similar to those of humans; however, P450s have not been adequately identified and analysed in this species.In this study, a novel CYP2E1 was isolated from tree shrew liver and was characterised in comparison with human, dog, and pig CYP2E1. Tree shrew CYP2E1 and human CYP2E1 showed high amino acid sequence identity (83%) and were closely related in a phylogenetic tree.Gene and genome structures of CYP2E1 were generally similar in humans, dogs, pigs, and tree shrews. Tissue expression patterns showed that tree shrew CYP2E1 mRNA was predominantly expressed in liver, just as for dog and pig CYP2E1 mRNAs. In tree shrews, recombinant CYP2E1 protein and liver microsomes metabolised chlorzoxazone and p-nitrophenol, probe substrates of human CYP2E1, just as they do in dogs and pigs.These results suggest that tree shrew CYP2E1 encodes a functional drug-metabolising enzyme that plays a role in the liver, similar to human CYP2E1.


Assuntos
Citocromo P-450 CYP2E1 , Tupaia , Humanos , Suínos , Animais , Cães , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Tupaia/metabolismo , Clorzoxazona/metabolismo , Tupaiidae/metabolismo , Filogenia , Musaranhos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo
4.
Comp Med ; 73(4): 277-284, 2023 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-37550055

RESUMO

Tree shrews display obvious reproductive cycles, and sexually mature male tree shrews produce little or no sperm with extremely low motility during the nonreproductive season; the mechanism underlying this phenomenon remains unknown. Because testis-specific serine/threonine kinases (TSSK) are specifically expressed in the testis and male germ cells of mammals, we hypothesized that they may have an important role in spermatogenesis or sperm function regulation in tree shrews. In addition, the expression, distribution, subcellular localization, and dynamic changes of TSSK in tree shrew sperm are unclear. Here we show that during the reproductive season, the seminiferous tubules were significantly larger as compared with the nonreproductive season and contained mature sperm and other germ cells. The mRNA expression of Tssk genes in testis was significantly higher than that in other tissues, and the mRNA level in the testis during the reproductive season was significantly higher than that in nonreproductive season. In addition, the mRNA level of Tssk3 in the testis and sperm was significantly higher than that of other members. Specifically, Tssk1 mRNA was distributed in the acrosome and throughout the flagellum of tree shrew sperm, Tssk2 was present in the acrosome, Tssk3 was localized to postacrosomal region and relocated to the main part of the flagellum after capacitation, and Tssk6 was distributed in the acrosome and postacrosomal region. These results indicate that the TSSK are important regulating reproductive function in tree shrews.


Assuntos
Testículo , Tupaia , Masculino , Animais , Testículo/metabolismo , Tupaia/genética , Tupaia/metabolismo , Tupaiidae/genética , Tupaiidae/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Musaranhos/genética , Musaranhos/metabolismo , Estações do Ano , Sêmen/metabolismo , Espermatozoides/metabolismo , Treonina , RNA Mensageiro , Serina
5.
J Biol Chem ; 299(9): 105066, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37468103

RESUMO

Among the rare venomous mammals, the short-tailed shrew Blarina brevicauda has been suggested to produce potent neurotoxins in its saliva to effectively capture prey. Several kallikrein-like lethal proteases have been identified, but the active substances of B. brevicauda remained unclear. Here, we report Blarina paralytic peptides (BPPs) 1 and 2 isolated from its submaxillary glands. Synthetic BPP2 showed mealworm paralysis and a hyperpolarization shift (-11 mV) of a human T-type Ca2+ channel (hCav3.2) activation. The amino acid sequences of BPPs were similar to those of synenkephalins, which are precursors of brain opioid peptide hormones that are highly conserved among mammals. However, BPPs rather resembled centipede neurotoxic peptides SLPTXs in terms of disulfide bond connectivity and stereostructure. Our results suggested that the neurotoxin BPPs were the result of convergent evolution as homologs of nontoxic endogenous peptides that are widely conserved in mammals. This finding is of great interest from the viewpoint of the chemical evolution of vertebrate venoms.


Assuntos
Canais de Cálcio Tipo T , Neurotoxinas , Peptídeos , Musaranhos , Animais , Humanos , Sequência de Aminoácidos , Neurotoxinas/química , Neurotoxinas/genética , Neurotoxinas/farmacologia , Peptídeos/síntese química , Peptídeos/genética , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Evolução Molecular , Musaranhos/classificação , Musaranhos/genética , Musaranhos/metabolismo , Tenebrio/efeitos dos fármacos , Células HEK293 , Eletrofisiologia
6.
Sci Total Environ ; 888: 164162, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37196962

RESUMO

The greater white-toothed shrew Crocidura russula has been used as a sentinel species for estimating environmental risks to human populations. Previous studies in mining areas have focused on the liver of shrews as the primary target of physiological and metabolic changes due to heavy metal pollution. However, populations persist even when detoxification by the liver seems to be compromised and damage is observed. These pollutant-adapted individuals inhabiting contaminated sites may exhibit altered biochemical parameters that confer increased tolerance in various tissues other than the liver. The skeletal muscle tissue of C. russula might be an alternative tissue that allows the survival of organisms inhabiting historically polluted sites due to the detoxification of redistributed metals. Organisms from two heavy metal mine populations and one population derived from an unpolluted site were used to determine the detoxification activities, antioxidant capacity, and oxidative damage, as well as cellular energy allocation parameters and acetylcholinesterase activity (a biomarker of neurotoxicity). Muscle biomarkers differ between shrews from polluted sites and shrews from the unpolluted location, with the mine animals showing: (1) a decreased energy consumption concomitant with increased energy reserves and total available energy; (2) reduced cholinergic activity, suggesting an impairment of neurotransmission at the neuromuscular junction; (3) an overall decrease in detoxification capacity and enzymatic antioxidant response and a higher level of lipid damage. Also, some of these markers differed between females and males. These changes may have resulted from a decreased detoxifying capacity of the liver and could potentially bring about significant ecological effects for this highly active species. Heavy metal pollution induced physiological changes in Crocidura russula showing that skeletal muscle may serve as a backup sink organ allowing rapid species adaptation and evolution.


Assuntos
Metais Pesados , Musaranhos , Masculino , Animais , Feminino , Humanos , Musaranhos/metabolismo , Acetilcolinesterase/metabolismo , Antioxidantes/metabolismo , Metais Pesados/metabolismo , Músculo Esquelético/metabolismo , Biomarcadores/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-36563947

RESUMO

Tree shrews (Tupaia belangeri) are a non-rodent primate-like species sometimes used for biomedical research involving hepatitis virus infections and toxicology. Genome analysis has indicated similarities between tree shrews and humans in the numbers of cytochromes P450 (P450 or CYP), which constitute a family of important drug-metabolizing enzymes; however, P450s have not been fully investigated in tree shrews. In this study, we identified CYP1A1, CYP1A2, CYP1B1, and CYP1D1 cDNAs from tree shrew liver and compared their characteristics with dog, pig, and human CYP1As. The deduced amino acid sequences of tree shrew CYP1s were highly identical (82-87 %) to human CYP1s. In tree shrews, CYP1A1 and CYP1A2 mRNAs were preferentially expressed in liver, whereas CYP1D1 mRNA was preferentially expressed in kidney and lung. In contrast, CYP1B1 mRNA was expressed in various tissues, with the most abundant expression in spleen. Among the tree shrew CYP1 mRNAs, CYP1A2 mRNA was most abundant in liver, and CYP1B1 mRNA was most abundant in kidney, small intestine, and lung. All tree shrew CYP1 proteins heterologously expressed in Escherichia coli catalyzed caffeine and estradiol in a similar manner to tree shrew liver microsomes and human, dog, and pig CYP1 proteins. These results suggest that tree shrew CYP1A1, CYP1A2, CYP1B1, and CYP1D1 genes, different form human pseudogene CYP1D1P, are expressed in liver, small intestine, lung, and/or kidney and encode functional drug-metabolizing enzymes important in toxicology.


Assuntos
Citocromo P-450 CYP1A1 , Citocromo P-450 CYP1A2 , Humanos , Animais , Cães , Suínos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A1/metabolismo , Tupaia/genética , Tupaia/metabolismo , Tupaiidae/genética , Tupaiidae/metabolismo , Musaranhos/genética , Musaranhos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Citocromo P-450 CYP1B1 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-36563948

RESUMO

Soricidae spp. (shrews) play an essential role in soil ecosystems and, due to their habitat and behavior, are exposed to soil pollutants, such as pesticides. Still, toxicity risk in Soricidae spp. has not been appropriately assessed. In this study, the musk shrew (Suncus murinus) was used as a model organism for toxicity assessment in Soricidae. Considering their carnivorous diet, it is reasonable to assume that the musk shrew has unique metabolic traits that are different from those of other common experimental models. This study describes the cytochrome P450 (CYP)-dependent metabolism affected by acetamiprid (ACP), a neonicotinoid insecticide. Pharmacokinetics analysis, an in vitro metabolic assay, and genetic analysis of CYP were performed and compared with data from mice and rats. Through phylogenetic and syntenic analyses, three families of CYP were identified in the musk shrew. Pharmacokinetic analysis showed that the blood concentration of ACP decreased more quickly in musk shrews than in mice. Moreover, the in vitro metabolic assay suggested more efficient metabolic responses toward ACP in musk shrews than in mice or rats. One of the CYP2A isoforms in musk shrews might be linked to a better ACP metabolism. From the results above, we describe novel metabolic traits of the musk shrew. Future research on recombinant CYP enzymes is necessary to fully understand CYP-dependent metabolism of xenobiotics in musk shrews.


Assuntos
Ecossistema , Musaranhos , Animais , Ratos , Camundongos , Musaranhos/genética , Musaranhos/metabolismo , Filogenia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo
9.
Cell Mol Life Sci ; 79(1): 35, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989866

RESUMO

Multiple representatives of eulipotyphlan mammals such as shrews have oral venom systems. Venom facilitates shrews to hunt and/or hoard preys. However, little is known about their venom composition, and especially the mechanism to hoard prey in comatose states for meeting their extremely high metabolic rates. A toxin (BQTX) was identified from venomous submaxillary glands of the shrew Blarinella quadraticauda. BQTX is specifically distributed and highly concentrated (~ 1% total protein) in the organs. BQTX shares structural and functional similarities to toxins from snakes, wasps and snails, suggesting an evolutional relevancy of venoms from mammalians and non-mammalians. By potentiating thrombin and factor-XIIa and inhibiting plasmin, BQTX induces acute hypertension, blood coagulation and hypokinesia. It also shows strong analgesic function by inhibiting elastase. Notably, the toxin keeps high plasma stability with a 16-h half-life in-vivo, which likely extends intoxication to paralyze or immobilize prey hoarded fresh for later consumption and maximize foraging profit.


Assuntos
Analgesia/métodos , Hipocinesia/fisiopatologia , Musaranhos/metabolismo , Toxinas Biológicas/metabolismo , Peçonhas/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Pressão Sanguínea/efeitos dos fármacos , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dor/induzido quimicamente , Dor/fisiopatologia , Dor/prevenção & controle , Homologia de Sequência de Aminoácidos , Musaranhos/genética , Trombina/antagonistas & inibidores , Trombina/metabolismo , Toxinas Biológicas/administração & dosagem , Toxinas Biológicas/genética , Peçonhas/genética
10.
Ecotoxicology ; 30(10): 1969-1982, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34505200

RESUMO

Heavy metals accumulated in the environment due to the mining industry may impact on the health of exposed wild animals with consequences at the population level via survival and selection of the most resistant individuals. The detection and quantification of shifts in gene frequencies or in the genetic structure in populations inhabiting polluted sites may be used as early indicators of environmental stress and reveal potential 'candidate gene biomarkers' for environmental health assessment. We had previously observed that specimens of the Greater white-toothed shrew (Crocidura russula) from two heavy metal mines in Southern Portugal (the Aljustrel and the Preguiça mines) carried physiological alterations compared to shrews from an unpolluted site. Here, we further investigated whether these populations showed genetic differences in genes relevant for physiological homeostasis and/or that are associated with pathways altered in animals living under chronic exposure to pollution, and which could be used as biomarkers. We analysed the mitochondrial cytochrome b (Cytb) gene and intronic and/or exonic regions of four nuclear genes: CYP1A1, LCAT, PRPF31, and p53. We observed (1) population differences in allele frequencies, types of variation, and diversity parameters in the Cytb, CYP1A1, and p53 genes; (2) purifying selection of Cytb in the mine populations; (3) genetic differentiation of the two mine populations from the reference by the p53 gene. Adding to our previous observations with Mus spretus, we provide unequivocal evidence of a population effect exerted by the contaminated environment of the mines on the local species of small mammals.


Assuntos
Citocromo P-450 CYP1A1 , Citocromos b , Intoxicação por Metais Pesados , Musaranhos , Proteína Supressora de Tumor p53 , Animais , Biomarcadores , Monitoramento Ambiental , Intoxicação por Metais Pesados/veterinária , Humanos , Metais Pesados/análise , Camundongos , Mineração , Musaranhos/metabolismo
11.
Toxins (Basel) ; 13(3)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810196

RESUMO

Venomousness is a complex functional trait that has evolved independently many times in the animal kingdom, although it is rare among mammals. Intriguingly, most venomous mammal species belong to Eulipotyphla (solenodons, shrews). This fact may be linked to their high metabolic rate and a nearly continuous demand of nutritious food, and thus it relates the venom functions to facilitation of their efficient foraging. While mammalian venoms have been investigated using biochemical and molecular assays, studies of their ecological functions have been neglected for a long time. Therefore, we provide here an overview of what is currently known about eulipotyphlan venoms, followed by a discussion of how these venoms might have evolved under ecological pressures related to food acquisition, ecological interactions, and defense and protection. We delineate six mutually nonexclusive functions of venom (prey hunting, food hoarding, food digestion, reducing intra- and interspecific conflicts, avoidance of predation risk, weapons in intraspecific competition) and a number of different subfunctions for eulipotyphlans, among which some are so far only hypothetical while others have some empirical confirmation. The functions resulting from the need for food acquisition seem to be the most important for solenodons and especially for shrews. We also present several hypotheses explaining why, despite so many potentially beneficial functions, venomousness is rare even among eulipotyphlans. The tentativeness of many of the arguments presented in this review highlights our main conclusion, i.e., insights regarding the functions of eulipotyphlan venoms merit additional study.


Assuntos
Evolução Molecular , Comportamento Predatório , Musaranhos/metabolismo , Peçonhas/metabolismo , Animais , Comportamento Competitivo , Filogenia , Musaranhos/genética , Especificidade da Espécie , Peçonhas/genética
12.
Sci Rep ; 11(1): 1011, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441654

RESUMO

Afrotheria is a clade of African-origin species with striking dissimilarities in appearance and habitat. In this study, we compared whole proteome sequences of six Afrotherian species to obtain a broad viewpoint of their underlying molecular make-up, to recognize potentially unique proteomic signatures. We find that 62% of the proteomes studied here, predominantly involved in metabolism, are orthologous, while the number of homologous proteins between individual species is as high as 99.5%. Further, we find that among Afrotheria, L. africana has several orphan proteins with 112 proteins showing < 30% sequence identity with their homologues. Rigorous sequence searches and complementary approaches were employed to annotate 156 uncharacterized protein sequences and 28 species-specific proteins. For 122 proteins we predicted potential functional roles, 43 of which we associated with protein- and nucleic-acid binding roles. Further, we analysed domain content and variations in their combinations within Afrotheria and identified 141 unique functional domain architectures, highlighting proteins with potential for specialized functions. Finally, we discuss the potential relevance of highly represented protein families such as MAGE-B2, olfactory receptor and ribosomal proteins in L. africana and E. edwardii, respectively. Taken together, our study reports the first comparative study of the Afrotherian proteomes and highlights salient molecular features.


Assuntos
Eutérios/classificação , Eutérios/genética , Animais , Sequência Conservada , Bases de Dados de Proteínas , Elefantes/classificação , Elefantes/genética , Elefantes/metabolismo , Eutérios/metabolismo , Evolução Molecular , Ouriços/classificação , Ouriços/genética , Ouriços/metabolismo , Anotação de Sequência Molecular , Toupeiras/classificação , Toupeiras/genética , Toupeiras/metabolismo , Filogenia , Domínios Proteicos , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteoma/genética , Proteômica , Musaranhos/classificação , Musaranhos/genética , Musaranhos/metabolismo , Especificidade da Espécie , Trichechus manatus/classificação , Trichechus manatus/genética , Trichechus manatus/metabolismo
13.
Genome Biol Evol ; 12(7): 1148-1166, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32520994

RESUMO

Animals that use venom to feed on a wide diversity of prey may evolve a complex mixture of toxins to target a variety of physiological processes and prey-defense mechanisms. Blarina brevicauda, the northern short-tailed shrew, is one of few venomous mammals, and is also known to eat evolutionarily divergent prey. Despite their complex diet, earlier proteomic and transcriptomic studies of this shrew's venom have only identified two venom proteins. Here, we investigated with comprehensive molecular approaches whether B. brevicauda venom is more complex than previously understood. We generated de novo assemblies of a B. brevicauda genome and submaxillary-gland transcriptome, as well as sequenced the salivary proteome. Our findings show that B. brevicauda's venom composition is simple relative to their broad diet and is likely limited to seven proteins from six gene families. Additionally, we explored expression levels and rate of evolution of these venom genes and the origins of key duplications that led to toxin neofunctionalization. We also found three proteins that may be involved in endogenous self-defense. The possible synergism of the toxins suggests that vertebrate prey may be the main target of the venom. Further functional assays for all venom proteins on both vertebrate and invertebrate prey would provide further insight into the ecological relevance of venom in this species.


Assuntos
Musaranhos/genética , Calicreínas Teciduais/genética , Peçonhas/genética , Animais , Feminino , Genoma , Masculino , Modelos Moleculares , Proteoma , Padrões de Referência , Saliva/metabolismo , Seleção Genética , Musaranhos/metabolismo , Glândula Submandibular/metabolismo , Transcriptoma , Peçonhas/metabolismo
14.
Dev Comp Immunol ; 100: 103427, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31278953

RESUMO

The intestinal epithelial monolayer forms a mucosal barrier between the gut microbes and the host tissue. The mucosal barrier is composed of mucins and antimicrobial peptides and proteins (AMPs). Several animal studies have reported that Paneth cells, which occupy the base of intestinal crypts, play an important role in the intestinal innate immunity by producing AMPs, such as lysozyme, Reg3 lectins, α-defensins, and group IIA secretory phospholipase A2 (GIIA sPLA2). The house musk shrew (Suncus murinus) has only a few intestinal commensal bacteria and is reported to lack Paneth cells in the intestine. Although the expression of lysozyme was reported in the suncus intestine, the expression of other AMPs has not yet been reported. Therefore, the current study was focused on GIIA sPLA2 expression in Suncus murinus. GIIA sPLA2 mRNA was found to be most abundant in the spleen and also highly expressed in the intestine. Cells expressing GIIA sPLA2 mRNA were distributed not only in the crypt, but also in the villi. In addition, intragastric injection of lipopolysaccharide increased GIIA sPLA2 expression in the small intestine of suncus. These results suggest that suncus may host unique AMP-secreting cells in the intestine.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Fosfolipases A2 do Grupo II/metabolismo , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Musaranhos/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Clonagem Molecular , Feminino , Fosfolipases A2 do Grupo II/genética , Fosfolipases A2 do Grupo II/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Masculino , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , Musaranhos/genética , Musaranhos/metabolismo , Baço/imunologia , Baço/metabolismo
16.
Cell Tissue Res ; 376(3): 401-412, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30680460

RESUMO

Lysozyme is one of the most prominent antimicrobial peptides and has been identified from many mammalian species. However, this enzyme has not been studied in the order Insectivora, which includes the most primitive placental mammals. Here, we done the lysozyme cDNA from Suncus murinus (referred to as suncus, its laboratory name) and compare the predicted amino acid sequence to those from other mammalian species. Quantitative PCR analysis revealed a relatively higher expression of this gene in the spleen and gastrointestinal tract of suncus. The lysozyme-immunopositive (ip) cells were found mainly in the red pulp of the spleen and in the mucosa of the whole small intestine, including the follicle-associated epithelium and subepithelial dome of Peyer's patches. The lysozyme-ip cells in the small intestine were mostly distributed in the intestinal crypt, although lysozyme-expressing cells were found not only in the crypt but also in the villi. On the other hand, only a few lysozyme-ip cells were found in the villi and some granules showing intense fluorescence were located toward the lumen. As reported for other mammals, Ki67-ip cells were localized in the crypt and did not co-localize with the lysozyme-ip cells. Moreover, fasting induced a decrease in the mRNA levels of lysozyme in the intestine of suncus. In conclusion, we firstly identified the lysozyme mRNA sequence, clarified expression profile of lysozyme transcripts in suncus and found a unique distribution of lysozyme-producing cells in the suncus intestine.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Muramidase/química , Musaranhos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/metabolismo , Mucosa Intestinal/enzimologia , Muramidase/genética , Muramidase/isolamento & purificação , Muramidase/metabolismo , Nódulos Linfáticos Agregados/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/metabolismo , Distribuição Tecidual , Transcriptoma
17.
Cell Tissue Res ; 374(3): 595-605, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30088080

RESUMO

The pineal gland structure and ultrastructure in the Northern (Blarina brevicauda) and Southern short-tailed shrew (Blarina carolinensis) are described by light and electron microscopy. Results observed were similar to other mammals of Insectivora described previously, specifically, the hedgehog (Erinaceus europaeus) and the Old World mole (Talpa europea). Two different types of pinealocytes were noticed by electron microscopy, in addition to relatively few glial cells. Granular vesicles were not noticed in abundance. The granular endoplasmic reticulum was observed and studded with vesicles. The golgi apparatus was well developed and appeared often. Synaptic ribbons were observed in several different formations consisting of ribbons and/or rods. The ciliary derivative, the rudimentary photoreceptor structures found in the pinealocytes of population I, was noticed in a 9 + 0 tubular pattern. Within these semifossorial shrews, the relationship between specific intracellular organelles and their function was discussed.


Assuntos
Glândula Pineal/citologia , Glândula Pineal/ultraestrutura , Musaranhos/metabolismo , Animais , Sinapses/metabolismo , Sinapses/ultraestrutura
18.
Bull Environ Contam Toxicol ; 99(6): 673-678, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29063129

RESUMO

Mercury (Hg) methylation is often elevated at the terrestrial-peatland interface, but methylmercury (MeHg) production at this "hot spot" has not been linked with in situ biotic accumulation. We examined total Hg and MeHg levels in peat, invertebrates and tissues of the insectivore Sorex cinereus (masked shrew), inhabiting a terrestrial-peatland ecotone in northern Minnesota, USA. Mean MeHg concentrations in S. cinereus (71 ng g-1) fell between concentrations measured in spiders (mean 70-140 ng g-1), and ground beetles and millipedes (mean 29-42 ng g-1). Methylmercury concentrations in S. cinereus increased with age and differed among tissues, with highest concentrations in kidneys and muscle, followed by liver and brain. Nearly all Hg in S. cinereus was in the methylated form. Overall, the high proportional accumulation of MeHg in peat at the site (3.5% total Hg as MeHg) did not lead to particularly elevated concentrations in invertebrates or shrews, which are below values considered a toxicological risk.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/metabolismo , Invertebrados/metabolismo , Compostos de Metilmercúrio/metabolismo , Musaranhos/metabolismo , Animais , Florestas , Mercúrio/análise , Minnesota , Solo
19.
J Exp Biol ; 220(Pt 15): 2834-2841, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28546508

RESUMO

Small non-migratory mammals with Northern distribution ranges apply a variety of behavioural and physiological wintering strategies. A rare energy-saving strategy is Dehnel's phenomenon, involving a reduction and later regrowth of the body size, several organs and parts of the skeleton in red-toothed shrews (Soricidae). The size extremes coincide with major life stages. However, the physiological consequences for the shrew's metabolism remain poorly understood. In keeping with the energetic limitations that may induce the size changes, we hypothesised that metabolic incorporation rates should remain the same across the shrews' lifetimes. In contrast, fat turnover rates should be faster in smaller subadults than in large juveniles and regrown adults, as the metabolic activity of fat tissue increases in winter individuals (subadults). Measuring the changes in the ratio of exhaled stable carbon isotopes, we found that the baseline diet of shrews changed across the season. A diet switch experiment showed that incorporation rates were consistently rapid (t50=38.2±21.1-69.3±53.5 min) and did not change between seasons. As predicted, fat turnover rates were faster in size-reduced subadults (t50=2.1±1.3 h) compared with larger juveniles (t50=5.5±1.7 h) and regrown adults (t50=5.0±4.4 h). In all three age/size classes, all body fat was turned over after 9-24 h. These results show that high levels of nutrient uptake are independent of body size, whereas fat turnover rates are negatively correlated with body size. Thus, the shrews might be under higher pressure to save energy in winter and this may have supported the evolution of Dehnel's phenomenon.


Assuntos
Isótopos de Carbono/análise , Dieta , Metabolismo Energético , Gorduras/metabolismo , Estações do Ano , Musaranhos/metabolismo , Animais , Tamanho Corporal , Testes Respiratórios , Feminino , Alemanha , Hibernação , Masculino , Respiração , Musaranhos/crescimento & desenvolvimento
20.
J Biomol Struct Dyn ; 35(8): 1654-1671, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27421773

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are neuromuscular proteins responsible for muscle contraction upon binding with chemical stimulant acetylcholine (ACh). The α-neurotoxins of snake mimic the structure of ACh and attacks nAChRs, which block the flow of ACh and leads to numbness and paralysis. The toxin-binding site of alpha subunit in the nAChRs is highly conserved throughout chordate lineages with few exceptions in resistance organisms. In this study, we have analyzed the sequence and structures of toxin-binding/resistant nAChRs and their interaction stability with toxins through molecular docking and molecular dynamics simulation (MDS). We have reported the potential glycosylation residues within the toxin-binding cleft adding sugar moieties through N-linked glycosylation in resistant organisms. Residue variations at key positions alter the secondary structure of binding cleft, which might interfere with toxin binding and it could be one of the possible explanations for the resistance to snake venoms. Analysis of nAChR-α-neurotoxin complexes has confirmed the key interacting residues. In addition, drastic variation in the binding stability of Mongoose nAChR-α-Bungarotoxin (α-BTX) and human nAChR-α-BTX complexes were found at specific phase of MDS. Our findings suggest that specific mutations in the binding site of toxin are potentially preventing the formation of stable complex of receptor-toxin, which might lead to mechanism of resistance. This in silico study on the binding cleft of nAChR and the findings of interacting residues will assist in designing potential inhibitors as therapeutic targets.


Assuntos
Bungarotoxinas/química , Neurotoxinas/química , Receptores Nicotínicos/química , Mordeduras de Serpentes/prevenção & controle , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bungarotoxinas/metabolismo , Colubridae/fisiologia , Cristalografia por Raios X , Ouriços/metabolismo , Herpestidae/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naja haje/fisiologia , Neurotoxinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Nicotínicos/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Musaranhos/metabolismo , Mordeduras de Serpentes/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...